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Palladium-catalyzed cross-coupling reactions are general and
commonly used synthetic methods for the formation of carbon-
carbon bonds.2 The cross-coupling methodologies tolerate a wide
array of functional groups and display high regioselectivity and
stereospecificity. When vinylmetals are used as coupling partners,
however, a reversal of regioselectivity and formation of thecine-
substitution products is often observed. Thecine-substitution is most
frequently encountered in the Stille coupling ofR-substituted vinyl
stannanes,3 and methods overcoming this selectivity problem have
been reported.4

Two widely acceptedcine-substitution mechanisms have been
postulated: the Kikukawa3g and the Busacca-Farina3d,e mecha-
nisms. The initial formation of a key sp3-gem-dimetallic Pd-
stannylalkane intermediate2, via regioselective migratory insertion
of PhPd(II)X (X ) I, BF4) into the vinylstannane1, is suggested
for both mechanistic pathways (Scheme 1).

Kikukawa proposed that intermediate2 undergoes aâ-hydride
elimination to afford the vinylstannane3.3g Subsequent hydro-
palladation across the alkene with opposite regiochemistry followed
by anti elimination of Bu3SnBF4 and regeneration of the catalyst
leads to thecine-product4. All efforts to detect and identify the
uncomplexed vinylstannanane3 have been unsuccessful.

Labeling and crossover experiments by Busacca and Farina3d,e

provided evidence to support a mechanism involving an intermedi-
ate palladium-carbene5, formed via a four-center transmetalation
of thegem-dimetallic intermediate2 with loss of Bu3SnI (Scheme
1). A 1,3-hydride shift followed by reductive elimination afforded
the cine-substitution product4.

The synthetic importance of the Stille coupling demands that
the cine-substitution mechanism be clearly established.

Providing that theâ-hydride shift is not an available reaction
pathway, the preparation of the sp3-gem-dimetallic halo-Pd(II)/
trialkylstannylalkane species should lead to Pd-stabilized carbenes
following the Busacca-Farina mechanism, and further react in
reactions typical of metal-carbenes.5 This Communication reports
two approaches for the preparation ofgem-dimetallic iodopalladio-
trialkylstannylalkane complexes as Pd-carbenoid precursors to probe
the cine-substitution mechanism in the Stille coupling.

Our initial efforts were directed at generating sp3-gem-dimetallic
iodo-Pd/trialkylstannylalkane species by oxidative insertion of Pd(0)
catalysts into iodomethyltrialkylstannanes. It was anticipated that
the decomposition of iodomethyltrialkylstannanes by Pd(0) catalysts
would lead to the formation of ethylene by dimerization of the car-
benoid intermediate. To test this hypothesis, iodomethylstannatrane6

(6) (δΗ ) 1.68,δSn ) -29.1) was decomposed in benzene-d6 in
the presence of Pd(P(t-Bu)3)2 (25 mol %) at room temperature for
36-48 h.7 The reactions were carried out in sealed NMR tubes
and monitored by1H and119Sn NMR spectroscopy.8 Most reward-
ingly, the presence of ethylene (δΗ ) 5.24) (not quantified) and
iodostannatrane (7) (δSn ) -57.8) was detected, with competitive

formation of formaldehyde (δH ) 8.75) (<1%) (eq 1).9 More
importantly, when the decomposition of6 was carried out in the
presence of a 5-fold excess of norbornene,exo-tricyclo[3.2.1.02,4]-
octane (8) was formed in 64% yield (eq 2).10 Ethylene and CH2O
were also present.11 These observations were consistent with the
intermediacy of a methylene carbenoid species.

Iodomethylstannatrane (6) displayed an enhanced reactivity in
the oxidative insertion reaction as compared with ICH2SnBu3 and
ICH2SnMe3.12 The cyclopropanation of norbornene (9-fold excess)
by ICH2SnBu3 catalyzed by Pd(P(t-Bu)3)2 (25 mol %) yielded8 in
71% yield (based on 33% conversion after 15 days). In addition,
C2H4, CH2O, MeSnBu3 (δΗ CH3 ) 0.11) (24%), and CH2(SnBu3)2

(δΗ CH2 ) -0.16) (5%) were formed.13

Further insights into the metal-carbenoid mechanism were gained
from observations made with the deuterium-labeledd2-6. Thed2-
methylene singlet (δD ) 1.68) of d2-6 decreased while a set of
signals appeared when treated with Pd(P(t-Bu)3)2 (25 mol %) and
excess norbornene.2H NMR established the clean formation of
tricycle d2-8, CD2O, and C2D4 (eq 3).14

The need for a Pd(0) catalyst in these reactions was confirmed
by treating6 with 50 to up to 200 mol % of P(t-Bu)3 in the absence
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or presence of a 10-fold excess of norbornene. No decomposition
of 6 or formation of cyclopropane8, ethylene, or formaldehyde
was detected after several days at room temperature, ruling out
phosphine-mediated decomposition mechanisms.

Envisioning that halopalladio-trialkylstannylalkane intermedi-
ates may be alternatively accessed under stoichiometric condi-
tions via transmetalation from tin to Pd(II) led to the synthesis
of Me3SnCH2Sn(CH2CH2CH2)3N (9) (δΗ CH2 ) -0.29).15 It
was postulated that the stannatrane moiety of9 would trans-
metalate preferentially with Pd(II)I2 complexes, giving cis-
Pd(II)I(CH2SnMe3) intermediates that would dimerize and cyclo-
propanate alkene.16 Indeed, treatment of a benzene-d6 solution of
9 and norbornene (9 equiv) with cationic [Pd(II)I]+I- complex10
(1.05 equiv) at 55°C for 6 days provided tricycle8 in 36% yield,
C2H4 (not quantified), iodostannatrane (7), Me3SnI (δΗ CH3 ) 0.11)
(59%), and Me4Sn (δΗ CH3 ) 0.05) (12%) (based on 80%
conversion) (eq 4).17

As illustrated in Scheme 2, oxidative insertion of Pd(0) into the
C-I bond18 of 6, ICH2SnBu3, or ICH2SnMe3 and reaction of Pd(II)
complex 10 with 9 converge to the key intermediatecis-iodo-
(methyltrialkylstannane)Pd(II) complexes12. These intermediates
12 rapidly react and are not detectable on the NMR time scale.
Formation of ethylene occurs by dimerization of intermediate12.19

The dimetallic12 reacts with the residual O2 present in solution to
generate CH2O and with norbornene, providing tricycle8.20-22

In conclusion, two complementary routes to sp3-gem-dimetallic
iodopalladio(II)-trialkylstannylalkane complexes have been reported.
These species exhibit carbenoid reactivity undergoing dimerization
and alkene cyclopropanation, therefore validating the Busacca-
Farinacine-substitution mechanism. Efforts to develop the synthetic
potential of these species are now underway in our laboratories
and will be reported in due course.
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